
Chapter 10

TRANSVERSE INSTABILITIES

10.1 Transverse Focusing and Transverse Wake

Transverse focusing of the particle beam is necessary. If not the beam will diverge hitting

the vacuum chamber and get lost. The alternating gradient focusing scheme suggested

by Courant and Synder [1] employs F-quadrupoles and D-quadrupoles to provide for

strong focusing of the beam in both the horizontal and vertical planes. For this reason,

the transverse beam size can be made very small and so is the size of the vacuum

chamber and the aperture of the magnets. In light sources, usually the Chasman-Green

lattices are used. They consist of double achromats or triple achromats, which are strong

focusing and give zero dispersion at both ends. Another merit of the achromats is that

they can provide much smaller transverse emittances for the electron beam than the

alternating gradient scheme of Courant and Synder.

Because quadrupoles can focus in only one transverse plane and defocus in the other,

transverse oscillations develop in both transverse planes. These are called betatron oscil-

lations, and the oscillation frequencies, !�=(2�), are called betatron frequencies, which

are usually di�erent in the two transverse planes. The number of betatron oscillations

made in a revolution turn of the beam, �� = !�=!0, is called the betatron tune. The

equation of motion of a beam particle in, for example, the vertical plane, is given by

d2y

dn2
+ (2���)

2y =
C2hF?1 i
�2E0

; (10.1)

where n denotes turn number and the right side is the contribution due to the transverse
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electromagnetic wake W1(�). Consider a coasting beam with current I0. The transverse

force averaged over the circumference of the ring, hF?1 i acting on the test particle is

related to the transverse impedance through Eqs. (1.26) to (1.28):

Z?1 = � iChF
?
1 i

e�I0�y
(10.2)

where �y is the transverse displacement of the beam center. After averaging over all the

beam particles, we obtain the equation of motion for the transverse motion of the beam

center:
d2�y

dn2
+ (2���)

2�y =
ie�I0Z

?
1 C

�2E0

�y : (10.3)

Thus, the transverse wake amounts to a betatron frequency shift

�!� = � i�c2

2!�E0

I0
C
Z?1 ; (10.4)

where c is the velocity of light. For a coasting beam, transverse excitation comes from

the transverse impedance that samples one or more of the betatron sidebands n!0 + !�
anking the revolution harmonic n. The reactive part of Z?1 (!) produces a real frequency
shift. The resistive part of the impedance produces an imaginary frequency shift, which

if positive implies instability. Since Re Z?1 (!) ? 0 when ! ? 0, the resistive part causes

instability for negative frequency. Therefore only coasting-beam modes with n < ���
can be unstable.

There is a direct parallel between the transverse dynamics and the longitudinal

dynamics, as is illustrated in the equations of motion in the longitudinal phase plane

and the transverse phase plane. However, there is a big di�erence that the betatron

tune �� � 1 while the synchrotron tune �s � 1.

10.2 Separation of Transverse and Longitudinal Mo-

tions

Just as for synchrotron oscillations, it is more convenient to change from (y; py) to the

circular coordinates (r�; �) in the transverse betatron phase space. Following Eq. (7.1),

we have �
y = r� cos �

py = r� sin � ;
(10.5)
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and Eq. (10.1) is transformed into8>><
>>:

dy

ds
=�!�

v
py

dpy
ds

=
!�
v
y � c

E0!��
hF?1 (� ; s)i ;

(10.6)

where instead of turn number, the continuous variable s, denoting the distance along

the designed orbit, has been used as the independent variable.

For a bunched beam, longitudinal motion has to be included. For time period

much less than the synchrotron damping time, Hamiltonian theory can be used. The

Hamiltonian for motions in both the longitudinal phase space and transverse phase space

can be written as

H = Hk +H? ; (10.7)

where Hk is the same Hamiltonian describing the longitudinal motion:

Hk = � �(�E)2

2v0�20E0
� eVrf
C0h!0

�
cos(�s � h!0�)� cos�s � h!0� sin�s

�
+ V (�)

���
wake

; (10.8)

while H? is the additional term coming from the equations of motion in the transverse

phase space as given by Eq. (10.6). Note that the transverse force hF?1 (� ; s)i in Eq. (10.6)
depends on the longitudinal variable � ; therefore

[Hk; H?] 6= 0 : (10.9)

We assume that the perturbation is small and synchro-betatron coupling is avoided.

Then

[Hk; H?] � 0 : (10.10)

This implies that in the transverse phase space, the azimuthal modes m? = 1; 2; � � � ,
and the radial modes k? = 1; 2; � � � are good eigenmodes. In fact, this is very reason-

able because at small perturbation, the transverse azimuthal modes m? correspond to

frequencies m?!� with separation !�. Since

!� � !0 � !s ; (10.11)

the possibility for di�erent transverse azimuthals to couple is remote. A direct result of

Eq. (10.10) is the factorization of the bunch distribution 	 in the combined longitudinal-

transverse phase space; i.e.,

	(r; �; r�; �) =  (r; �)f(r�; �) ; (10.12)
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where  (r; �) is the distribution in the longitudinal phase space and f(r�; �) the distri-

bution in the transverse phase space. Now decompose  and f into the unperturbed

parts and the perturbed parts:

 (r; �) =  0(r) +  1(r; �) ;

f(r�; �) = f0(r�) + f1(r�; �) : (10.13)

When substituted into Eq. (10.12), there are four terms. The term  1f0 implies only

the longitudinal-mode excitations driven by the longitudinal impedance without any

transverse excitations. This is what we have discussed in the previous sections and we

do not want to include it again in the present discussion. The term  0f1 describes

the transverse excitations driven by the transverse impedance only. This term will be

included in the  1f1 term if we retain the azimuthal m = 0 longitudinal mode. For this

reason, the bunch distribution 	 in the combined longitudinal-transverse phase space

contains only two terms

	(r; �; r�; �) =  0(r)f0(r�) +  1(r; �)f1(r�; �)e
�i
s=v ; (10.14)

where we have separated out the collective angular frequency 
 from  1f1.

10.3 Sacherer's Integral Equation

The linearized Vlasov equation is studied in the circular coordinates in both the longitu-

dinal phase space and transverse phase space. However, only the transverse wake force

will be included in the discussion here. After substituting the distribution in Eq. (10.14),

the �rst order terms of the equation become�
�i


v
f1 1 +

!s
v
f1
@ 1

@�
+
!�
v
 1
@f1
@�

�
e�i
s=v� 0

df0
dr�

sin �
c

E0!��
hF?1 (� ; s)i = 0 : (10.15)

It is worth pointing out that since the transverse wake force hF?1 (� ; s)i is a function

of the longitudinal coordinate � , it should also contribute to the second equation of

Eq. (9.2) although the longitudinal wake force has been neglected here. It is, however,

legitimate to drop this contribution if synchro-betatron resonance is avoided and the

transverse beam size has not grown too large (see Exercise 10.4).

The next approximation is to consider only the rigid dipole mode in the transverse

phase space; i.e., the bunch is displaced by an in�nitesimal amount D from the center
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Figure 10.1: A bunch executing betatron motion with an amplitude D in the rigid

dipole mode. In the transverse phase space, it is rotating counterclockwise rigidly

with the radial o�set D.

of the transverse phase space and executes betatron oscillations as a rigid object by

revolving at frequency !�=(2�) counterclockwise. Then according to the convention of

Eq. (10.5) and Fig 10.1, we must have,

f0(r�) + f1(~r�) = f0
�
~r �Dei�

�
; (10.16)

where ~r� and ~r are treated as complex number in the transverse phase plane. When

D ! 0, this becomes

f1(r�; �) = �Df 00(r�)ei� : (10.17)

Since we are retaining only one mode of transverse motion, all the modes that we are

going to study are again synchrotron motion on top of this transverse mode. For this

reasons, these synchrotron modes are no longer sidebands of the revolution harmonics;

they are now sidebands of the betatron sidebands. Some of the transverse modes are

shown in Fig. 10.2.

Equation. (10.15) then becomes�
i(
� !�) 1 � !s

@ 1

@�

�
De�i
s=v +

ic2

2E0!�
 0hF?1 (� ; s)i = 0 ; (10.18)

where we have dropped the e�i� component of sin � because that corresponds to rotation

in the transverse phase space with frequency �!�=(2�) which is very far from !�=(2�)

provided that the frequency shift due to the wake force is small. Notice that the trans-

verse distribution f1(r�; �) has been removed and the Vlasov equation involves only the
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mode m=0 m=�1 m=�2 m=0 m=�1 m=�2 m=0 m=�1 m=�2

(a) �=0 rad (b) �=5 rad (c) �=9 rad

Figure 10.2: Head-tail modes of transverse oscillation. The plots show the con-

tortions of a single bunch on separate revolutions, and with six revolutions super-

imposed (denoted by k). Vertical axis is di�erence signal from position monitor,

horizontal axis is time, and �� = 4:833. The chromaticity phases are (a) � = 0 rad,

(b) � = 5 rad, and (c) � = 9 rad. Chromaticity will be introduced in Sec. 10.6.

longitudinal perturbed distribution function  1(r; �). This  1 is the same perturbed

distribution that we studied before with the exception that the azimuthal mode m = 0

is included.

The transverse wake force on a beam particle in the nth bunch at a time advance

� is, similar to the longitudinal counterpart in Eq. (9.9),

hF?1n(� ; s)i = �e
2D

C

1X
k=�1

M�1X
`=0

Z 1

�1
d� 0�

� �`[�
0; s� kC � (s`�sn)� v(� 0��)]W1[kC + (s`�sn) + v(� 0��)] : (10.19)

We assumeM identical bunches equally spaced. For the �th coupled mode, we substitute

in the above expression the perturbed density of the nth bunch �1n(�)e
�i
s=v including

the phase lead as given by Eq. (9.10). Now the derivation follows exactly the longitudinal

counterpart in Chapter 9 and we obtain

hF?1n�(� ; s)i =
ie2MD!0�

C
e�i
s=v

1X
q=�1

~�1n(!q)Z
?
1 (!q)e

i!q� ; (10.20)

where !q = (qM+�)!0+!�+
. We next substitute the result into the linearized Vlasov

equation and expand  1 into azimuthals according to  1(r; �) =
P

m �mRm(r)e
im�. We
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�nally obtain Sacherer's integral equation for transverse instability

(
� !� �m!s)�mRm(r) =

� i�e2MNc

E0!�T 2
0

g0
X
m0

im�m
0

�m0

Z
r0dr0Rm0(r0)

X
q

Z?1 (!q)Jm0(!qr
0)Jm(!qr) ; (10.21)

where the unperturbed distribution g0(r) de�ned in Eq. (9.30) has been used instead

of  0(r). Notice that all transverse distributions are not present in the equation and

what we have are longitudinal distributions. This is not unexpected because we have

retained only one transverse mode of motion, namely the rigid dipole mode, in the trans-

verse phase space. Therefore, the Sacherer's integral equation for transverse instability

is almost the same as the one for longitudinal instability. There are only two di�er-

ences. First, the unperturbed longitudinal distribution g0(r) appears in the former but

r�1dg0(r)=dr appears in the latter. Second, although the m= 0 mode does not occur

in the longitudinal equation because of violation of energy conservation, however, it is

a valid azimuthal mode in the transverse equation because it describes rigid betatron

oscillation.

10.4 Solution of Sacherer's Integral Equations

Consider �rst the transverse integral equation, where W (r) = g0(r) is considered to be

a weight function. For each azimuthal m, �nd a complete set of orthonormal functions

gmk(r) (k = 1; 2; � � � ) such that

Z
W (r)gmk(r)gmk0(r)rdr = Ækk0 : (10.22)

On both sides of the integral equation, perform the expansion

�mRm(r)e
im� =

X
k

amkW (r)gmk(r)e
im� : (10.23)

Some comments are necessary. From Eq. (10.22), it appears that the orthonormal func-

tions gmk(r) depend on the weight function W (r) only and are independent of the az-

imuthal m. As a result, gmk(r) will not be uniquely de�ned, because the weight function

W (r) = g0(r) is independent of m. In fact, this is not true. If we look into either
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the Sacherer's longitudinal integral equation (9.31) or the transverse integral equation

(10.21) for one single azimuthal, it is easy to see that

Rm(r) / W (r)Jm(!qr) : (10.24)

Therefore, for small r, we must have the behavior

Rm(r) � rm lim
r!0

W (r) : (10.25)

Taking the parabolic distribution in the longitudinal case as an example, lim r!0W (r) is

a constant implying that Rm(r) � rm. From Eq. (10.23), since gmk(r) is the expansion

of Rm(r), the small-r behavior of gmk(r) will be constrained. This makes the set of

orthonormal functions gmk(r) dependent on the azimuthalm and become, in fact, unique.

After substituting the expansion of �mRm into both sides of Eq. (10.21), multiply

on both sides by gmk(r) and integrate over rdr. Sacherer's integral equation becomes

(
�!��m!s)amk = � i�e
2MNc

E0!�T 2
0

X
m0k0

am0k0

X
q

Z?1 (!q)~�
�
mk(!q)

~�m0k0(!q) ; (10.26)

where we have de�ned

~�mk(!) =

Z
i�mW (r)Jm(!r)gmk(r)rdr : (10.27)

The ~�mk(!) is the Fourier transform of the eigenmode �mk(�), which can be shown to

be in fact the (mk) component of the perturbed linear density �1(�). Let us start from

the Fourier transform of the linear density of the (mk)th mode

~�
(mk)
1 (!) =

1

2�

Z
d��

(mk)
1 (�)e�i!� =

1

2�

Z
d�d�E  

(mk)
1 (�;�E)e�i!� : (10.28)

Now substitute the (mk)th mode of Eq. (10.23) for  
(mk)
1 to obtain

~�
(mk)
1 (!) =

!s�
2E0

2��

Z
rdrd�W (r)gmk(r)e

im��i!� : (10.29)

The integration over � can be performed to yield a Bessel function. Finally using the

de�nition of ~�mk(!) given in Eq. (10.27), we arrive at

~�
(mk)
1 (!) =

!s�
2E0

�

Z
rdrW (r)gmk(r)i

�mJm(!r) =
!s�

2E0

�
~�mk(!) : (10.30)
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Taking the Fourier transform, we therefore obtain

�
(mk)
1 (�) =

!s�
2E0

�
�mk(�) : (10.31)

Notice that ~�mk(!) is dimensionless; therefore it must be a function of !�L where

�L is the total bunch length. The sum over the power spectrum should give us

X
q

j~�mk(!q)j2 �
Z

d!

M!0
j~�mk(!)j2 � 1

M!0�L
; (10.32)

where !q = (qM + �)!0 + !� + m!s. For this reason, Eq. (10.26) can roughly be

transformed into

(
�!��m!s)amk = � i

1+m

e�c2

2!�E0

Ib
L

X
m0k0

am0k0

P
qZ

?
1 (!q)

~��mk(!q)�m0k0(!q)P
q
~��mk(!q)�mk(!q)

; (10.33)

where Ib is the current of one bunch and L = �c�L is the total bunch length. Equa-

tion (10.33) is especially useful if we include only one mode of excitation. For example,

the lowest radial mode k = 1 is usually the most prominent one to be excited and the

di�erent azimuthal modes do not mix when the perturbation is small.

This expression is very similar to the coasting-beam formula of Eq. (10.4). Besides

the averaging over the power spectra, the coasting beam current per unit length I0=C

is replaced by the average single bunch current Ib divided by the total bunch length

L in meters. The factor (1+m)�1 in front says that higher-order modes are harder

to excite, and is introduced under some assumption of the unperturbed distribution in

phase space [2]. It is easy to understand why the power spectrum hmk(!) = j~�mk(!)j2
enters because Z?1 (!)~�mk(!) gives the deecting �eld, which must be integrated over

the bunch spectrum to get the total force. Written in the form of Eq. (10.33), there is

no need for ~�mk(!) or �mk(�) to have any special normalization.

The Sacherer's longitudinal integral equation (9.29) can be solved in exactly the

same way by identifying the weight function as

W (r) = �1

r

dg0(r)

dr
; (10.34)

where the negative sign is included because dg0(r)=dr < 0. The result is

(
�m!s)amk =
i2�e2MNm�

�2E0T 2
0!s

X
m0k0

am0k0

X
q

Z
k
0(!q)

!q
~��mk(!q)

~�m0k0(!q) ; (10.35)
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where ~�mk(!q) is again given by Eq. (10.27), but with the weight function replaced by

Eq. (10.34). However, ~�mk(!q) now has the dimension of of (time)�1 because the weight
function is di�erent. Dimensional analysis gives

X
q

j~�mk(!q)j2 �
Z

d!

M!0
j~�mk(!)j2 � 1

M!0� 3L
: (10.36)

Equation (10.35) becomes approximately

(
�m!s)amk =
im

1+m

4�2eIb�

3�2E0!s� 3L

X
m0k0

am0k0

P
q

Z
k
0 (!q)

!q
~�m0k0(!q)~�

�
mk(!q)P

q
~��mk(!q)

~�mk(!q)
; (10.37)

where the extra factor in front is a result of the assumption of some particular unper-

turbed phase-space distribution. A more detailed derivation of Eq. (10.37) can be found

in Ref. [2].

10.5 Sacherer's Sinusoidal Modes

Assuming the perturbation is small so that only a single azimuthal mode will contribute,

we learn from the Sacherer's integral equation (10.21) that the perturbed excitation is

Rm(r)e
im� / W (r)Jm(!qr)e

im� : (10.38)

For a bunch of half length �̂ = 1
2
�L, Rm(�̂ ) = 0. So it is reasonable to write the kth

radial mode corresponding to azimuthal m as

Rmk(r)e
im� / W (r)Jm

�
xmk

r

�̂

�
eim� ; (10.39)

where xmk is the kth zero of the Bessel function Jm. Sacherer [3] discovered that,

assuming a uniform or water-bag unperturbed distribution; i.e., W (r) is constant for

r < �̂ , the projection of Rmk(r)e
im� onto the � axis

�(mk)(�) /
Z
W (r)Jm

�
xmk

r

�̂

�
eim�d�E (10.40)

is approximately sinusoidal. In fact, head-tail excitations that are sinusoidal-like had

been observed in the CERN Proton Synchrotron (PS) booster. For this reason, instead
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of solving the integral equation, Sacherer approximated �(mk)(�) by a linear combination

of sinusoidal functions, and these modes are called sinusoidal modes. He introduced a

set of orthonormal functions

�m(�) /

8><
>:

cos(m+1)�
�

�L
m = 0; 2; � � � ;

sin(m+1)�
�

�L
m = 1; 3; � � � :

(10.41)

Note that �m(�) has exactly m nodes along the bunch not including the two ends. If

we restrict ourselves to the most prominent lowest radial mode (k = 1), these �m(�)'s

are just the approximates to �(m1)(�). From now on, the radial mode index k will be

dropped.

The power spectrum of the modes in Eq. (10.41) is proportional to

hm(!) =
4(m+1)2

�2
1 + (�1)m cos �y

[y2 � (m+1)2]2
(10.42)

where y = !�L=� and �L = L=v is the total length of the bunch in time. They are

plotted in Fig. 7.5. The normalization of hm(!) in Eq. (10.42) has been chosen in such a

way that, when the smooth approximation is applied to the summation over k, we have

B
+1X

q=�1
hm(!q) � B

M!0

Z +1

�1
hm(!)d! = 1 : (10.43)

Here B = M!0�L=(2�) is the bunching factor in the presence of M identical equally-

spaced bunches, or the ratio of full bunch length to bunch separation.

For the elliptical distribution in the longitudinal phase space, g0(r) / (�̂ 2� r2)�1=2,
so that the linear density becomes constant, the spectral excitations of the lowest radial

mode �m(�) are the Legendre polynomials, the Fourier transform ~�m(!) are the spherical

Bessel functions jm, and the power spectra hm / jjmj2. We called these the Legendre

modes. For the bi-Gaussian distribution in the longitudinal phase space, �m(�) are the

Hermite polynomials and ~�m(!) are !
m multiplied by a Gaussian. We call these the

Hermite modes.

For the longitudinal integral equation, we have the same modes if we have the

same weight function. For the longitudinal case, the weight function is W (r) = g00(r)=r
instead. Therefore the sinusoidal modes correspond to g0(r) / (�̂ 2�r2) or linear density
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�(�) / (�̂ 2� � 2)3=2. The Legendre modes correspond to g0(r) / (�̂ 2� r2)1=2 or parabolic
linear density �(�) / (�̂ 2� � 2). The Hermite modes correspond to the same bi-Gaussian

distribution as in the transverse situation. These solutions are summarized in Table 10.1.

Sometimes the growth rates computed are rather sensitive to the longitudinal bunch

distribution assumed. Therefore, results using the sinusoidal modes are estimates only.

After so much mathematics, it is possible to present some simple expressions for the

growth rates. From Eq. (10.37) for the longitudinal and Eq. (10.33) for the transverse,

let us assume that there is no mixing between azimuthal modes as well as radial modes.

Then the longitudinal growth rate simpli�es to

1

�mk�
= Im
 � m

1+m

4�2eIb�

3�2E0!s� 3L

X
q

Re Zk0(!q)
!q

hmk(!q) ; (10.44)

where !q = (qM + �)!0 +m!s and the power spectrum has been normalized to unity

according to Eq. (10.43). The transverse growth rate simpli�es to

1

�mk�

= Im
 � � 1

1+m

eIbc

4���E0

X
q

Re Z?1 (!q)hmk(!q) ; (10.45)

where !q = (qM + �)!0 + !� +m!s.

10.6 Chromaticity Frequency Shift

The betatron tune �� of a beam particle depends on its momentum o�set Æ. The

chromatic betatron tune shift is de�ned as

��� = �Æ ; (10.46)

where � is called the chromaticity�. Because the beam particle makes synchrotron oscil-

lations, its betatron tune will be changing from turn to turn depending on its momentum

o�set. There will be a betatron phase o�set which will accumulate. Consider a beam

particle which is currently at the head of the bunch. It will be executing betatron os-

cillations with the same betatron tune as the synchronous particle, because it is at the

synchronous momentum. Below transition, the synchrotron oscillation is clockwise in

�Sometimes, especially in Europe, the chromaticity � is also de�ned by ��� = ���Æ.
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the longitudinal phase space as indicated in Fig. 10.3, because, for example, at a positive

momentum o�set, the particle comes back earlier or its arrival time advance increases.

Thus leaving the head of the bunch, the particle loses energy and starts to oscillate

∆ν  > 0β

∆ν  < 0β

Chromaticity ξ > 0
∆ E

τ
tail head

Below transition

Figure 10.3: Synchrotron motion in the longitudinal phase space below transition.

If chromaticity � is positive, the betatron tune will be larger/smaller than that of

the synchrotron particle, when the particle energy o�set is positive/negative.

with smaller betatron tune if the chromaticity � is positive. Turn by turn, the slip in

betatron phase accumulates and reaches a maximum when the particle arrives at the

tail of the bunch. After that the momentum o�set of the second half of the synchrotron

oscillation becomes positive. The betatron tune is larger than the nominal value and

the accumulated betatron phase slip gradually reduces. When the particle arrives at the

head all the betatron phase slip vanishes. This phase slip is illustrated schematically in

Fig. 10.4.

We would like to compute the phase slip for a particle that has a time advance

� relative to the synchronous particle. The momentum o�set in Eq. (10.46) can be

eliminated using the equation of motion of the phase

�� = ��T0Æ ; (10.47)

where � is the slip factor and �� is the change in time advance of the particle in a turn.

The phase lag in a turn is then

Z
2���� = �2� �

�

Z
��

T0
= ��!0

�
� : (10.48)
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τ

∆ Ε

Figure 10.4: Schematic drawing showing the lagging of the betatron phase, de-

picted by the arrows, from the head (right) to the tail (left) of the bunch when the

chromaticity � and slip factor � have the same signs.

Thus, below transition (� < 0), a particle at the bunch head (� = �̂) has an accumu-

lated betatron phase advance of ��!0�̂ =� relative to the synchronous particle, while

a particle at the tail (� = ��̂ ) has an accumulated betatron phase slip of ��!0�̂ =�.
Equation (10.48) indicates that the phase lag increases linearly along the bunch and is

independent of the momentum o�set. Relative to the synchronous particle, we write

this accumulated betatron phase for a particle at arrival time advance � as

��!0
�
� = �!�� ; (10.49)

where

!� =
�!0
�

(10.50)

is called the betatron angular frequency shift due to chromaticity. Below transition and

for positive chromaticity, !� is negative, but the accumulated betatron phase at the

bunch head is positive. Thus, in previous derivation we should make the substitution

ei!q� ! ei(!q�!�)� : (10.51)

where !q = (qM + �)!0+m!s. For this reason, !� should be subtracted from !q in the

argument of the power spectrum hm but not in the argument of Re Z?1 of the growth

rate formula like Eq. (10.45) and also not in the argument of ImZ?1 of the tune shift

formula. The total betatron phase shift from head to tail is represented by � = !��L,
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Figure 10.5: Positive chromaticity above transition shifts the all modes of excitation

towards the positive frequency side by !�. Mode m = 0 becomes stable, but mode

m = 1 may be unstable because it samples more negative Re Z?1 than positive

Re Z?1 .

where �L is the total length of the bunch from head to tail. The head-tail modes for

various values of � are shown in Fig. 10.2.

For positive chromaticity above transition, !� > 0, the modes of excitation in

Fig. 7.5 are therefore shifted to the right by the angular frequency !�. As shown in

Fig. 10.5, mode m = 0 sees more impedance in positive frequency than negative fre-

quency and is therefore stable. However, it is possible that mode m = 1, as in the

illustration of Fig. 10.5, samples more the highly negative Re Z?1 at negative frequencies

than positive Re Z?1 at positive frequencies and becomes unstable.

If the transverse impedance is suÆciently smooth, it can be removed from the

summation in Eq. (10.45). The growth rate for the m = 0 mode becomes

1

�0
= � eIbc

2!�E0�L
Re Z?1 (!�) : (10.52)

The transverse impedance of the CERN Proton Synchrotron (PS) had been measured

in this way by recording the growth rates of a bunch at di�erent chromaticities.
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10.7 Exercises

10.1. Fill in all the steps in the derivation of Sacherer's integral equation for transverse

instabilities.

10.2. Derive the power spectra of the sinusoidal modes of excitation in Eq. (10.41), and

show that they are given by Eq. (10.42) when properly normalized according to

Eq. (10.43).

10.3. If the transverse impedance is suÆciently smooth, it can be removed from the

summation in Eq. (10.33). Show that the growth rate for the m = 0 mode becomes

1

�0
= � eIbc

2!�E0�L
Re Z?1 (!�) : (10.53)

The transverse impedance of the CERN PS has been measured in this way by

recording the growth rates of a bunch at di�erent chromaticities. The CERN PS

has a mean radius of 100 m and it can store proton bunches from 1 to 26 GeV with

a transition gamma of t = 6. The bunch has a spectral spread of � �100 MHz,

implying that each measurement of the impedance is averaged over an interval

of � 200 MHz. If the impedance has to be measured up to � 2 GHz and the

sextupoles in the PS can attain chromaticities in the range of �10, at what proton
energy should this experiment be carried out?

10.4. Rede�ne the longitudinal coordinates in Eq. (9.1) by X = xv and PX = pxv, where

v is the particle velocity, so that X carries the dimension of length.

(a) Show that, for the equations of motion (9.2) in the longitudinal phase space

and (10.6) in the transverse phase space, the Hamiltonian is

H = �!s
2v

(X2 + P 2
X
)� !�

2v
(y2 + p2y)

� v�

E0!s�2

Z X

0

dX 0hF k0 (X 0=v; s)i+ cy

E0!��2
hF?1 (X=v; s)i : (10.54)

(b) Show that the second equation of motion in Eq. (9.2) needs to be modi�ed to

dpx
ds

=
!s
v
x+

�

E0!s�2
hF k0 (x; s)i �

y

E0!��3v

@

@x
hF?1 (x; s)i ; (10.55)

where the last term is the synchro-betatron coupling term which we dropped in

our discussion.
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